

Mathematics Specialist Units 3 & 4 Test 7 2016

Section 1 Calculator Free

Rectilinear Motion (including SHM) and Statistical Inference.

STUDENT'S NAME: _____

DATE: Thursday 8th September

TIME: 20 minutes

MARKS: 23

INSTRUCTIONS:

Standard Items: Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters, Formula Sheet.

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

A particle oscillates 1.2 m either side of a central position with simple harmonic motion. The period of the motion is 8 seconds.

(a) What is the maximum acceleration?

[4]

(b) What is the maximum speed?

[2]

2. (8 marks)

A particle moves in a straight line. Its displacement (metres) from a fixed point is given by x(t) where *t*, is time in seconds. The acceleration of the particle is given by a(t) = 2-4x, where x(0) = v(0) = 0 and $v(t) \ge 0 \forall t$.

(a) Determine v in terms of x.

[4]

(b) Hence, determine the range of values for x and v.

[4]

3. (9 marks)

The time taken to complete a task has mean μ minutes and standard deviation 10 minutes. For *Z* as the standard normal variable, $P(-2.5 < Z < 2.5) \approx 0.988$.

(a) A sample of 100 students completed the task with a mean time of 102 minutes. State a 98.8% confidence interval for μ .

[2]

(b) Another sample of *n* students (where $n \ge 30$) is chosen. Determine *n* if we are to be 98.8% confident that the sample mean is to differ from μ by no more than 1.25 minutes. [3]

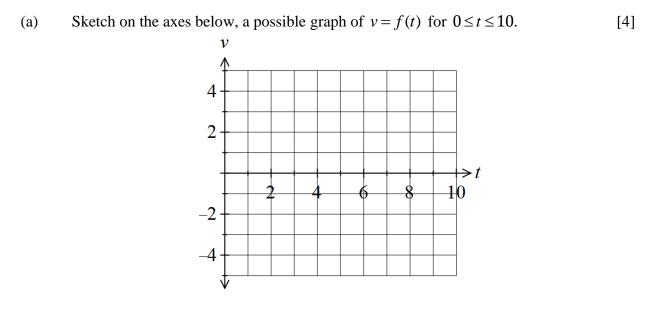
(c) Given that $\mu = 100$ minutes, estimate the probability that a sample of 100 students will complete the task with a mean time exceeding 102.5 minutes.

[4]

Mathematics Specialist Units 3 & 4 Test 7 2016

Section 2 Calculator Assumed

Rectilinear Motion (including SHM) and Statistical Inference.


DATE: Thursday 8th SeptemberTIME: 30 minutesMARKS: 34INSTRUCTIONS:Standard Items:Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters,
Formula Sheet retained from Section 1.Special Items:Drawing instruments, templates, three calculators, notes on one side of a single A4 page
(these notes to be handed in with this assessment).

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

4. (7 marks)

STUDENT'S NAME:

An object, travelling in a straight line, has an initial velocity of v = -1 m/s and is capable of a maximum speed of 3 m/s. During its travels it reaches its maximum speed, stops twice but changes direction only once, before coming to rest after 10 seconds.

(b) Indicate on your graph when the object is subject to maximum retardation. [1]

(c) Provide a mathematical statement for calculating the distance travelled in the 10 seconds. [2]

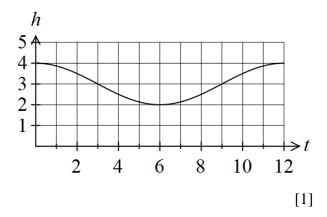
5. (10 marks)

A vehicle travels along a straight stretch of highway. The driver notices a car stalled on the highway *k* meters ahead and applies the brakes of the vehicle. The acceleration of the vehicle *t* seconds after the breaks are applied is given by $a = -10e^{-0.1t}$

(a) Determine an expression for the displacement of the vehicle *t* seconds after the brakes are applied.

[5]

[5]


(b) The vehicle comes to a complete stop after 3 seconds just behind the stalled car. Determine k and the initial speed of the vehicle.

6. (9 marks)

The depth of water h(t) metres at a jetty is graphed against time (t hours) as shown in the accompanying diagram. The height, y, of the water surface above the mean water level

satisfies the equation
$$\frac{d^2 y}{dt^2} = -n^2 y$$
.

(a) State the depth of the mean water level.

(b) Determine an expression for y(t) and hence, determine an expression for h(t) in terms of y(t).[3]

(c) Calculate the time interval between two consecutive occasions when the water level is at a depth of 3.5 m.

[2]

(d) For 60% of the *period*, the water level exceeds *k* metres. Determine *k*.

[3]

7. (8 marks)

The time taken for a child to complete a particular puzzle is normally distributed with a mean 3 minutes and standard deviation 20 seconds.

(a) A sample of fifty children of the same age collectively took 2 hours and 35 minutes to complete the puzzle. Calculate the mean time, in seconds, for this sample. [2]

(b) Estimate the probability that a second sample of 50 students of the same age will take a total of more than 2 hours and 35 minutes to complete the puzzle.

[4]

(c) Children who complete the puzzle under k seconds are classified 'highly gifted'. If 0.01% of all children are classified highly gifted, determine the value of k. [2]